
Putting the “You” in CPU
By Lexi Mattick & Hack Club · July, 2023

https://kognise.dev/
https://hackclub.com/

Chapter 0: Intro

I’ve done a lot of things with computers, but I’ve always had a gap in my knowledge: what

exactly happens when you run a program on your computer? I thought about this gap — I had

most of the requisite low-level knowledge, but I was struggling to piece everything together. Are

programs really executing directly on the CPU, or is something else going on? I’ve used

syscalls, but how do they work? What are they, really? How do multiple programs run at the

same time?

I cracked and started �guring as much out as possible. There aren’t many comprehensive

systems resources if you aren’t going to college, so I had to sift through tons of different sources

of varying quality and sometimes con�icting information. A couple weeks of research and

almost 40 pages of notes later, I think I have a much better idea of how computers work from

startup to program execution. I would’ve killed for one solid article explaining what I learned,

so I’m writing the article that I wished I had.

And you know what they say… you only truly understand something if you can explain it to

someone else.

In a hurry? Feel like you know this stuff already?

[Read chapter 3] and I guarantee you will learn something new. Unless you’re like, Linus

Torvalds himself.

https://github.com/kognise
http://127.0.0.1:3000/how-to-run-a-program

Chapter 1: The “Basics”

The one thing that surprised me over and over again while writing this article was how simple

computers are. It’s still hard for me not to psych myself out, expecting more complexity or

abstraction than actually exists! If there’s one thing you should burn into your brain before

continuing, it’s that everything that seems simple actually is that simple. This simplicity is very

beautiful and sometimes very, very cursed.

Let’s start with the basics of how your computer works at its very core.

How Computers Are Architected

The central processing unit (CPU) of a computer is in charge of all computation. It’s the big

cheese. The shazam alakablam. It starts chugging as soon as you start your computer,

executing instruction after instruction after instruction.

The �rst mass-produced CPU was the Intel 4004, designed in the late 60s by an Italian

physicist and engineer named Federico Faggin. It was a 4-bit architecture instead of the 64-bit

systems we use today, and it was far less complex than modern processors, but a lot of its

simplicity does still remain.

The “instructions” that CPUs execute are just binary data: a byte or two to represent what

instruction is being run (the opcode), followed by whatever data is needed to run the

instruction. What we call machine code is nothing but a series of these binary instructions in a

row. Assembly is a helpful syntax for reading and writing machine code that’s easier for

humans to read and write than raw bits; it is always compiled to the binary that your CPU

knows how to read.

http://www.intel4004.com/
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/Assembly_language

An aside: instructions aren’t always represented 1:1 in machine code as in the above

example. For example, add eax, 512 translates to 05 00 02 00 00.

The �rst byte (05) is an opcode speci�cally representing adding the EAX register to a 32-bit

number. The remaining bytes are 512 (0x200) in little-endian byte order.

Defuse Security created a helpful tool for playing around with the translation between

assembly and machine code.

RAM is your computer’s main memory bank, a large multi-purpose space which stores all the

data used by programs running on your computer. That includes the program code itself as

well as the code at the core of the operating system. The CPU always reads machine code

directly from RAM, and code can’t be run if it isn’t loaded into RAM.

The CPU stores an instruction pointer which points to the location in RAM where it’s going to

fetch the next instruction. After executing each instruction, the CPU moves the pointer and

repeats. This is the fetch-execute cycle.

https://en.wikipedia.org/wiki/Endianness
https://defuse.ca/online-x86-assembler.htm

After executing an instruction, the pointer moves forward to immediately after the instruction

in RAM so that it now points to the next instruction. That’s why code runs! The instruction

pointer just keeps chugging forward, executing machine code in the order in which it has been

stored in memory. Some instructions can tell the instruction pointer to jump somewhere else

instead, or jump different places depending on a certain condition; this makes reusable code

and conditional logic possible.

This instruction pointer is stored in a register. Registers are small storage buckets that are

extremely fast for the CPU to read and write to. Each CPU architecture has a �xed set of

registers, used for everything from storing temporary values during computations to

con�guring the processor.

Some registers are directly accessible from machine code, like ebx in the earlier diagram.

Other registers are only used internally by the CPU, but can often be updated or read using

specialized instructions. One example is the instruction pointer, which can’t be read directly

but can be updated with, for example, a jump instruction.

Processors Are Naive

Let’s go back to the original question: what happens when you run an executable program on

your computer? First, a bunch of magic happens to get ready to run it — we’ll work through all

of this later — but at the end of the process there’s machine code in a �le somewhere. The

operating system loads this into RAM and instructs the CPU to jump the instruction pointer to

that position in RAM. The CPU continues running its fetch-execute cycle as usual, so the

program begins executing!

(This was one of those psyching-myself-out moments for me — seriously, this is how the

program you are using to read this article is running! Your CPU is fetching your browser’s

instructions from RAM in sequence and directly executing them, and they’re rendering this

article.)

https://en.wikipedia.org/wiki/Processor_register

It turns out CPUs have a super basic worldview; they only see the current instruction pointer

and a bit of internal state. Processes are entirely operating system abstractions, not something

CPUs natively understand or keep track of.

waves hands processes are abstractions made up by os devs big byte to sell more computers

For me, this raises more questions than it answers:

1. If the CPU doesn’t know about multiprocessing and just executes instructions

sequentially, why doesn’t it get stuck inside whatever program it’s running? How can

multiple programs run at once?

2. If programs run directly on the CPU, and the CPU can directly access RAM, why can’t

code access memory from other processes, or, god forbid, the kernel?

3. Speaking of which, what’s the mechanism that prevents every process from running any

instruction and doing anything to your computer? AND WHAT’S A DAMN SYSCALL?

The question about memory deserves its own section and is covered in [chapter 5] — the

TL;DR is that most memory accesses actually go through a layer of misdirection that remaps

the entire address space. For now, we’re going to pretend that programs can access all RAM

directly and computers can only run one process at once. We’ll explain away both of these

assumptions in time.

It’s time to leap through our �rst rabbit hole into a land �lled with syscalls and security rings.

http://127.0.0.1:3000/the-translator-in-your-computer

Aside: what is a kernel, btw?

Your computer’s operating system, like macOS, Windows, or Linux, is the collection of

software that runs on your computer and makes all the basic stuff work. “Basic stuff” is a

really general term, and so is “operating system” — depending on who you ask, it can

include such things as the apps, fonts, and icons that come with your computer by default.

The kernel, however, is the core of the operating system. When you boot up your computer,

the instruction pointer starts at a program somewhere. That program is the kernel. The

kernel has near-full access to your computer’s memory, peripherals, and other resources,

and is in charge of running software installed on your computer (known as userland

programs). We’ll learn about how the kernel has this access — and how userland programs

don’t — over the course of this article.

Linux is just a kernel and needs plenty of userland software like shells and display servers

to be usable. The kernel in macOS is called XNU and is Unix-like, and the modern

Windows kernel is called the NT Kernel.

Two Rings to Rule Them All

The mode (sometimes called privilege level or ring) a processor is in controls what it’s allowed

to do. Modern architectures have at least two options: kernel/supervisor mode and user mode.

While an architecture might support more than two modes, only kernel mode and user mode

are commonly used these days.

In kernel mode, anything goes: the CPU is allowed to execute any supported instruction and

access any memory. In user mode, only a subset of instructions is allowed, I/O and memory

access is limited, and many CPU settings are locked. Generally, the kernel and drivers run in

kernel mode while applications run in user mode.

Processors start in kernel mode. Before executing a program, the kernel initiates the switch to

user mode.

https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Architecture_of_Windows_NT

An example of how processor modes manifest in a real architecture: on x86-64, the current

privilege level (CPL) can be read from a register called cs (code segment). Speci�cally, the CPL

is contained in the two least signi�cant bits of the cs register. Those two bits can store x86-64’s

four possible rings: ring 0 is kernel mode and ring 3 is user mode. Rings 1 and 2 are designed

for running drivers but are only used by a handful of older niche operating systems. If the CPL

bits are 11, for example, the CPU is running in ring 3: user mode.

What Even is a Syscall?

Programs run in user mode because they can’t be trusted with full access to the computer. User

mode does its job, preventing access to most of the computer — but programs need to be able to

access I/O, allocate memory, and interact with the operating system somehow! To do so,

software running in user mode has to ask the operating system kernel for help. The OS can

then implement its own security protections to prevent programs from doing anything

malicious.

If you’ve ever written code that interacts with the OS, you’ll probably recognize functions like

open, read, fork, and exit. Below a couple of layers of abstraction, these functions all use

system calls to ask the OS for help. A system call is a special procedure that lets a program start a

transition from user space to kernel space, jumping from the program’s code into OS code.

User space to kernel space control transfers are accomplished using a processor feature called

software interrupts:

1. During the boot process, the operating system stores a table called an interrupt vector

table (IVT; x86-64 calls this the interrupt descriptor table) in RAM and registers it with

https://en.wikipedia.org/wiki/Bit_numbering
https://en.wikipedia.org/wiki/Interrupt#Software_interrupts
https://en.wikipedia.org/wiki/Interrupt_vector_table
https://en.wikipedia.org/wiki/Interrupt_descriptor_table

the CPU. The IVT maps interrupt numbers to handler code pointers.

2. Then, userland programs can use an instruction like INT which tells the processor to

look up the given interrupt number in the IVT, switch to kernel mode, and then jump the

instruction pointer to the memory address stored in the IVT.

When this kernel code �nishes, it tells the CPU to switch back to user mode and return the

instruction pointer to where it was when the interrupt was triggered. This is accomplished

using an instruction like IRET.

(If you were curious, the interrupt ID used for system calls on Linux is 0x80. You can read a list

of Linux system calls on Michael Kerrisk’s online manpage directory.)

Wrapper APIs: Abstracting Away Interrupts

Here’s what we know so far about system calls:

User mode programs can’t access I/O or memory directly. They have to ask the OS for

help interacting with the outside world.

Programs can delegate control to the OS with special machine code instructions like INT

and IRET.

Programs can’t directly switch privilege levels; software interrupts are safe because the

processor has been precon�gured by the OS with where in the OS code to jump to. The

interrupt vector table can only be con�gured from kernel mode.

https://www.felixcloutier.com/x86/intn:into:int3:int1
https://www.felixcloutier.com/x86/iret:iretd:iretq
https://man7.org/linux/man-pages/man2/syscalls.2.html

Programs need to pass data to the operating system when triggering a syscall; the OS needs to

know which speci�c system call to execute alongside any data the syscall itself needs, for

example, what �lename to open. The mechanism for passing this data varies by operating

system and architecture, but it’s usually done by placing data in certain registers or on the

stack before triggering the interrupt.

The variance in how system calls are called across devices means it would be wildly

impractical for programmers to implement system calls themselves for every program. This

would also mean operating systems couldn’t change their interrupt handling for fear of

breaking every program that was written to use the old system. Finally, we typically don’t write

programs in raw assembly anymore — programmers can’t be expected to drop down to

assembly any time they want to read a �le or allocate memory.

So, operating systems provide an abstraction layer on top of these interrupts. Reusable higher-

level library functions that wrap the necessary assembly instructions are provided by libc on

Unix-like systems and part of a library called ntdll.dll on Windows. Calls to these library

functions themselves don’t cause switches to kernel mode, they’re just standard function calls.

Inside the libraries, assembly code does actually transfer control to the kernel, and is a lot

more platform-dependent than the wrapping library subroutine.

When you call exit(1) from C running on a Unix-like system, that function is internally

running machine code to trigger an interrupt, after placing the system call’s opcode and

arguments in the right registers/stack/whatever. Computers are so cool!

https://www.gnu.org/software/libc/
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/libraries-and-headers

The Need for Speed / Let’s Get CISC-y

Many CISC architectures like x86-64 contain instructions designed for system calls, created

due to the prevalence of the system call paradigm.

Intel and AMD managed not to coordinate very well on x86-64; it actually has two sets of

optimized system call instructions. SYSCALL and SYSENTER are optimized alternatives to

instructions like INT 0x80. Their corresponding return instructions, SYSRET and SYSEXIT, are

designed to transition quickly back to user space and resume program code.

(AMD and Intel processors have slightly different compatibility with these instructions.

SYSCALL is generally the best option for 64-bit programs, while SYSENTER has better support

with 32-bit programs.)

Representative of the style, RISC architectures tend not to have such special instructions.

AArch64, the RISC architecture Apple Silicon is based on, uses only one interrupt instruction

for syscalls and software interrupts alike. I think Mac users are doing �ne :)

Whew, that was a lot! Let’s do a brief recap:

Processors execute instructions in an in�nite fetch-execute loop and don’t have any

concept of operating systems or programs. The processor’s mode, usually stored in a

register, determines what instructions may be executed. Operating system code runs in

kernel mode and switches to user mode to run programs.

To run a binary, the operating system switches to user mode and points the processor to

the code’s entry point in RAM. Because they only have the privileges of user mode,

programs that want to interact with the world need to jump to OS code for help. System

calls are a standardized way for programs to switch from user mode to kernel mode and

into OS code.

Programs typically use these syscalls by calling shared library functions. These wrap

machine code for either software interrupts or architecture-speci�c syscall instructions

that transfer control to the OS kernel and switch rings. The kernel does its business and

switches back to user mode and returns to the program code.

https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://www.felixcloutier.com/x86/syscall.html
https://www.felixcloutier.com/x86/sysenter
https://www.felixcloutier.com/x86/sysret.html
https://www.felixcloutier.com/x86/sysexit
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/SVC--Supervisor-Call-

Let’s �gure out how to answer my �rst question from earlier:

If the CPU doesn’t keep track of more than one process and just executes instruction after

instruction, why doesn’t it get stuck inside whatever program it’s running? How can

multiple programs run at once?

The answer to this, my dear friend, is also the answer to why Coldplay is so popular… clocks!

(Well, technically timers. I just wanted to shoehorn that joke in.)

Chapter 2: Slice Dat Time

Let’s say you’re building an operating system and you want users to be able to run multiple

programs at once. You don’t have a fancy multi-core processor though, so your CPU can only

run one instruction at a time!

Luckily, you’re a very smart OS developer. You �gure out that you can fake parallelism by

letting processes take turns on the CPU. If you cycle through the processes and run a couple

instructions from each one, they can all be responsive without any single process hogging the

CPU.

But how do you take control back from program code to switch processes? After a bit of

research, you discover that most computers come with timer chips. You can program a timer

chip to trigger a switch to an OS interrupt handler after a certain amount of time passes.

Hardware Interrupts

Earlier, we talked about how software interrupts are used to hand control from a userland

program to the OS. These are called “software” interrupts because they’re voluntarily triggered

by a program — machine code executed by the processor in the normal fetch-execute cycle

tells it to switch control to the kernel.

OS schedulers use timer chips like PITs to trigger hardware interrupts for multitasking:

https://en.wikipedia.org/wiki/Programmable_interval_timer

1. Before jumping to program code, the OS sets the timer chip to trigger an interrupt after

some period of time.

2. The OS switches to user mode and jumps to the next instruction of the program.

3. When the timer elapses, it triggers a hardware interrupt to switch to kernel mode and

jump to OS code.

4. The OS can now save where the program left off, load a different program, and repeat the

process.

This is called preemptive multitasking; the interruption of a process is called preemption. If you’re,

say, reading this article on a browser and listening to music on the same machine, your very

own computer is probably following this exact cycle thousands of times a second.

Timeslice Calculation

A timeslice is the duration an OS scheduler allows a process to run before preempting it. The

simplest way to pick timeslices is to give every process the same timeslice, perhaps in the

10 ms range, and cycle through tasks in order. This is called �xed timeslice round-robin

scheduling.

Aside: fun jargon facts!

Did you know that timeslices are often called “quantums?” Now you do, and you can

impress all your tech friends. I think I deserve heaps of praise for not saying quantum in

every other sentence in this article.

Speaking of timeslice jargon, Linux kernel devs use the jiffy time unit to count �xed

frequency timer ticks. Among other things, jif�es are used for measuring the lengths of

timeslices. Linux’s jiffy frequency is typically 1000 Hz but can be con�gured when

compiling the kernel.

A slight improvement to �xed timeslice scheduling is to pick a target latency — the ideal longest

time for a process to respond. The target latency is the time it takes for a process to resume

execution after being preempted, assuming a reasonable number of processes. This is pretty

hard to visualize! Don’t worry, a diagram is coming soon.

https://en.wikipedia.org/wiki/Preemption_(computing)
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/jiffies.h

Timeslices are calculated by dividing the target latency by the total number of tasks; this is

better than �xed timeslice scheduling because it eliminates wasteful task switching with fewer

processes. With a target latency of 15 ms and 10 processes, each process would get 15/10 or

1.5 ms to run. With only 3 processes, each process gets a longer 5 ms timeslice while still

hitting the target latency.

Process switching is computationally expensive because it requires saving the entire state of

the current program and restoring a different one. Past a certain point, too small a timeslice

can result in performance problems with processes switching too rapidly. It’s common to give

the timeslice duration a lower bound (minimum granularity). This does mean that the target

latency is exceeded when there are enough processes for the minimum granularity to take

effect.

At the time of writing this article, Linux’s scheduler uses a target latency of 6 ms and a

minimum granularity of 0.75 ms.

Round-robin scheduling with this basic timeslice calculation is close to what most computers

do nowadays. It’s still a bit naive; most operating systems tend to have more complex

schedulers which take process priorities and deadlines into account. Since 2007, Linux has

used a scheduler called Completely Fair Scheduler. CFS does a bunch of very fancy computer

science things to prioritize tasks and divvy up CPU time.

Every time the OS preempts a process it needs to load the new program’s saved execution

context, including its memory environment. This is accomplished by telling the CPU to use a

different page table, the mapping from “virtual” to physical addresses. This is also the system

https://docs.kernel.org/scheduler/sched-design-CFS.html

that prevents programs from accessing each other’s memory; we’ll go down this rabbit hole in

chapters [5] and [6] of this article.

Note #1: Kernel Preemptability

So far, we’ve been only talking about the preemption and scheduling of userland processes.

Kernel code might make programs feel laggy if it took too long handling a syscall or executing

driver code.

Modern kernels, including Linux, are preemptive kernels. This means they’re programmed in

a way that allows kernel code itself to be interrupted and scheduled just like userland

processes.

This isn’t very important to know about unless you’re writing a kernel or something, but

basically every article I’ve read has mentioned it so I thought I would too! Extra knowledge is

rarely a bad thing.

Note #2: A History Lesson

Ancient operating systems, including classic Mac OS and versions of Windows long before NT,

used a predecessor to preemptive multitasking. Rather than the OS deciding when to preempt

programs, the programs themselves would choose to yield to the OS. They would trigger a

software interrupt to say, “hey, you can let another program run now.” These explicit yields

were the only way for the OS to regain control and switch to the next scheduled process.

This is called cooperative multitasking. It has a couple major �aws: malicious or just poorly

designed programs can easily freeze the entire operating system, and it’s nigh impossible to

ensure temporal consistency for realtime/time-sensitive tasks. For these reasons, the tech

world switched to preemptive multitasking a long time ago and never looked back.

http://127.0.0.1:3000/the-translator-in-your-computer
http://127.0.0.1:3000/lets-talk-about-forks-and-cows
https://en.wikipedia.org/wiki/Kernel_preemption
https://en.wikipedia.org/wiki/Cooperative_multitasking

Chapter 3: How to Run a Program

So far, we’ve covered how CPUs execute machine code loaded from executables, what ring-

based security is, and how syscalls work. In this section, we’ll dive deep into the Linux kernel to

�gure out how programs are loaded and run in the �rst place.

We’re speci�cally going to look at Linux on x86-64. Why?

Linux is a fully featured production OS for desktop, mobile, and server use cases. Linux is

open source, so it’s super easy to research just by reading its source code. I will be

directly referencing some kernel code in this article!

x86-64 is the architecture that most modern desktop computers use, and the target

architecture of a lot of code. The subset of behavior I mention that is x86-64-speci�c will

generalize well.

Most of what we learn will generalize well to other operating systems and architectures, even if

they differ in various speci�c ways.

Basic Behavior of Exec Syscalls

Let’s start with a very important system call: execve. It loads a program and, if successful,

replaces the current process with that program. A couple other syscalls (execlp, execvpe, etc.)

exist, but they all layer on top of execve in various fashions.

Aside: execveat

execve is actually built on top of execveat, a more general syscall that runs a program with

some con�guration options. For simplicity, we’ll mostly talk about execve; the only

difference is that it provides some defaults to execveat.

Curious what ve stands for? The v means one parameter is the vector (list) of arguments

(argv), and the e means another parameter is the vector of environment variables (envp).

Various other exec syscalls have different suf�ces to designate different call signatures.

The at in execveat is just “at”, because it speci�es the location to run execve at.

The call signature of execve is:

int execve(const char *filename, char *const argv[], char *const envp[]);

The filename argument speci�es a path to the program to run.

argv is a null-terminated (meaning the last item is a null pointer) list of arguments to the

program. The argc argument you’ll commonly see passed to C main functions is actually

calculated later by the syscall, thus the null-termination.

The envp argument contains another null-terminated list of environment variables used

as context for the application. They’re… conventionally KEY=VALUE pairs. Conventionally. I

love computers.

Fun fact! You know that convention where a program’s �rst argument is the name of the

program? That’s purely a convention, and isn’t actually set by the execve syscall itself! The �rst

argument will be whatever is passed to execve as the �rst item in the argv argument, even if it

has nothing to do with the program name.

Interestingly, execve does have some code that assumes argv[0] is the program name. More

on this later when we talk about interpreted scripting languages.

Step 0: De�nition

We already know how syscalls work, but we’ve never seen a real-world code example! Let’s look

at the Linux kernel’s source code to see how execve is de�ned under the hood:

fs/exec.c

2105
2106
2107
2108
2109
2110
2111

SYSCALL_DEFINE3(execve,
const char __user *, filename,
const char __user *const __user *, argv,
const char __user *const __user *, envp)

{
return do_execve(getname(filename), argv, envp);

}

SYSCALL_DEFINE3 is a macro for de�ning a 3-argument system call’s code.

I was curious why the arity is hardcoded in the macro name; I googled around and learned

that this was a workaround to �x some security vulnerability.

The �lename argument is passed to a getname() function, which copies the string from user

space to kernel space and does some usage tracking things. It returns a filename struct, which

is de�ned in include/linux/fs.h. It stores a pointer to the original string in user space as well

as a new pointer to the value copied to kernel space:

include/linux/fs.h

2294
2295
2296
2297
2298
2299
2300

struct filename {
const char *name; /* pointer to actual string */
const __user char *uptr; /* original userland pointer */
int refcnt;
struct audit_names *aname;
const char iname[];

};

The execve system call then calls a do_execve() function. This, in turn, calls

do_execveat_common()with some defaults. The execveat syscall which I mentioned earlier also

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/exec.c#L2105-L2111
https://en.wikipedia.org/wiki/Arity
https://nvd.nist.gov/vuln/detail/CVE-2009-0029
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/fs.h#L2294-L2300

calls do_execveat_common(), but passes through more user-provided options.

In the below snippet, I’ve included the de�nitions of both do_execve and do_execveat:

fs/exec.c

2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046

static int do_execve(struct filename *filename,
const char __user *const __user *__argv,
const char __user *const __user *__envp)

{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);

}

static int do_execveat(int fd, struct filename *filename,
const char __user *const __user *__argv,
const char __user *const __user *__envp,
int flags)

{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };

return do_execveat_common(fd, filename, argv, envp, flags);
}

[spacing sic]

In execveat, a �le descriptor (a type of id that points to some resource) is passed to the syscall

and then to do_execveat_common. This speci�es the directory to execute the program relative

to.

In execve, a special value is used for the �le descriptor argument, AT_FDCWD. This is a shared

constant in the Linux kernel that tells functions to interpret pathnames as relative to the

current working directory. Functions that accept �le descriptors usually include a manual

check like if (fd == AT_FDCWD) { /* special codepath */ }.

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/exec.c#L2028-L2046

Step 1: Setup

We’ve now reached do_execveat_common, the core function handling program execution. We’re

going to take a brief step back from staring at code to get a bigger picture view of what this

function does.

The �rst major job of do_execveat_common is setting up a struct called linux_binprm. I won’t

include a copy of the whole struct de�nition, but there are several important �elds to go over:

Data structures like mm_struct and vm_area_struct are de�ned to prepare virtual

memory management for the new program.

argc and envc are calculated and stored to be passed to the program.

filename and interp store the �lename of the program and its interpreter, respectively.

These start out equal to each other, but can change in some cases: one such case occurs

when the binary being executed is different from the program name is when running

interpreted programs like Python scripts with a shebang. In this example, filename

points to the Python �le but the interp is the Python interpreter’s path.

buf is an array �lled with the �rst 256 bytes of the �le to be executed. It’s used to detect

the format of the �le and load script shebangs.

(TIL: binprm stands for binary program.)

Let’s take a closer look at this buffer buf:

linux_binprm @ include/linux/binfmts.h

64 char buf[BINPRM_BUF_SIZE];

As we can see, its length is de�ned as the constant BINPRM_BUF_SIZE. By searching the

codebase for this string, we can �nd a de�nition for this in include/uapi/linux/binfmts.h:

include/uapi/linux/binfmts.h

18
19

/* sizeof(linux_binprm->buf) */
#define BINPRM_BUF_SIZE 256

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/binfmts.h#L15-L65
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/binfmts.h#L64
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/uapi/linux/binfmts.h#L18-L19

So, the kernel loads the opening 256 bytes of the executed �le into this memory buffer.

Aside: what’s a UAPI?

You might notice that the above code’s path contains /uapi/. Why isn’t the length de�ned

in the same �le as the linux_binprm struct, include/linux/binfmts.h?

UAPI stands for “userspace API.” In this case, it means someone decided that the length of

the buffer should be part of the kernel’s public API. In theory, everything UAPI is exposed

to userland, and everything non-UAPI is private to kernel code.

Kernel and user space code originally coexisted in one jumbled mass. In 2012, UAPI code

was refactored into a separate directory as an attempt to improve maintainability.

Step 2: Binfmts

The kernel’s next major job is iterating through a bunch of “binfmt” (binary format) handlers.

These handlers are de�ned in �les like fs/binfmt_elf.c and fs/binfmt_flat.c. Kernel

modules can also add their own binfmt handlers to the pool.

Each handler exposes a load_binary() function which takes a linux_binprm struct and checks

if the handler understands the program’s format.

This often involves looking for magic numbers in the buffer, attempting to decode the start of

the program (also from the buffer), and/or checking the �le extension. If the handler does

support the format, it prepares the program for execution and returns a success code.

Otherwise, it quits early and returns an error code.

The kernel tries the load_binary() function of each binfmt until it reaches one that succeeds.

Sometimes these will run recursively; for example, if a script has an interpreter speci�ed and

that interpreter is, itself, a script, the hierarchy might be binfmt_script > binfmt_script >

binfmt_elf (where ELF is the executable format at the end of the chain).

https://lwn.net/Articles/507794/
https://wiki.archlinux.org/title/Kernel_module
https://en.wikipedia.org/wiki/Magic_number_(programming)

Format Highlight: Scripts

Of the many formats Linux supports, binfmt_script is the �rst I want to speci�cally talk about.

Have you ever read or written a shebang? That line at the start of some scripts that speci�es the

path to the interpreter?

1 #!/bin/bash

I always just assumed these were handled by the shell, but no! Shebangs are actually a feature

of the kernel, and scripts are executed with the same syscalls as every other program.

Computers are so cool.

Take a look at how fs/binfmt_script.c checks if a �le starts with a shebang:

load_script @ fs/binfmt_script.c

40
41
42

/* Not ours to exec if we don't start with "#!". */
if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!'))

return -ENOEXEC;

If the �le does start with a shebang, the binfmt handler then reads the interpreter path and any

space-separated arguments after the path. It stops when it hits either a newline or the end of

the buffer.

There are two interesting, wonky things going on here.

First of all, remember that buffer in linux_binprm that was �lled with the �rst 256 bytes of the

�le? That’s used for executable format detection, but that same buffer is also what shebangs

are read out of in binfmt_script.

During my research, I read an article that described the buffer as 128 bytes long. At some point

after that article was published, the length was doubled to 256 bytes! Curious why, I checked

the Git blame — a log of everybody who edited a certain line of code — for the line where

BINPRM_BUF_SIZE is de�ned in the Linux source code. Lo and behold…

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/binfmt_script.c#L40-L42

COMPUTERS ARE SO COOL!

Since shebangs are handled by the kernel, and pull from buf instead of loading the whole �le,

they’re always truncated to the length of buf. Apparently, 4 years ago, someone got annoyed by

the kernel truncating their >128-character paths, and their solution was to double the

truncation point by doubling the buffer size! Today, on your very own Linux machine, if you

have a shebang line more than 256 characters long, everything past 256 characters will be

completely lost.

Imagine having a bug because of this. Imagine trying to �gure out the root cause of what’s

breaking your code. Imagine how it would feel, discovering that the problem is deep within the

Linux kernel. Woe to the next IT person at a massive enterprise who discovers that part of a

path has mysteriously gone missing.

The second wonky thing: remember how it’s only convention for argv[0] to be the program

name, how the caller can pass any argv they want to an exec syscall and it will pass through

unmoderated?

It just so happens that binfmt_script is one of those places that assumes argv[0] is the

program name. It always removes argv[0], and then adds the following to the start of argv:

Path to the interpreter

Arguments to the interpreter

Filename of the script

Example: Argument Modi�cation

Let’s look at a sample execve call:

// Arguments: filename, argv, envp
execve("./script", ["A", "B", "C"], []);

This hypothetical script �le has the following shebang as its �rst line:

script

1 #!/usr/bin/node --experimental-module

The modi�ed argv �nally passed to the Node interpreter will be:

["/usr/bin/node", "--experimental-module", "./script", "B", "C"]

After updating argv, the handler �nishes preparing the �le for execution by setting

linux_binprm.interp to the interpreter path (in this case, the Node binary). Finally, it returns 0

to indicate success preparing the program for execution.

Format Highlight: Miscellaneous Interpreters

Another interesting handler is binfmt_misc. It opens up the ability to add some limited formats

through userland con�guration, by mounting a special �le system at

/proc/sys/fs/binfmt_misc/. Programs can perform specially formatted writes to �les in this

directory to add their own handlers. Each con�guration entry speci�es:

How to detect their �le format. This can specify either a magic number at a certain offset

or a �le extension to look for.

The path to an interpreter executable. There’s no way to specify interpreter arguments,

so a wrapper script is needed if those are desired.

https://docs.kernel.org/admin-guide/binfmt-misc.html

Some con�guration �ags, including one specifying how binfmt_misc updates argv.

This binfmt_misc system is often used by Java installations, con�gured to detect class �les by

their 0xCAFEBABE magic bytes and JAR �les by their extension. On my particular system, a

handler is con�gured that detects Python bytecode by its .pyc extension and passes it to the

appropriate handler.

This is a pretty cool way to let program installers add support for their own formats without

needing to write highly privileged kernel code.

In the End (Not the Linkin Park Song)

An exec syscall will always end up in one of two paths:

It will eventually reach an executable binary format that it understands, perhaps after

several layers of script interpreters, and run that code. At this point, the old code has

been replaced.

… or it will exhaust all its options and return an error code to the calling program, tail

between its legs.

If you’ve ever used a Unix-like system, you might’ve noticed that shell scripts run from a

terminal still execute if they don’t have a shebang line or .sh extension. You can test this out

right now if you have a non-Windows terminal handy:

Shell session

$ echo "echo hello" > ./file
$ chmod +x ./file
$./file
hello

(chmod +x tells the OS that a �le is an executable. You won’t be able to run it otherwise.)

So, why does the shell script run as a shell script? The kernel’s format handlers should have no

clear way of detecting shell scripts without any discernible label!

Well, it turns out that this behavior isn’t part of the kernel. It’s actually a common way for your

shell to handle a failure case.

When you execute a �le using a shell and the exec syscall fails, most shells will retry executing

the �le as a shell script by executing a shell with the �lename as the �rst argument. Bash will

typically use itself as this interpreter, while ZSH uses whatever sh is, usually Bourne shell.

This behavior is so common because it’s speci�ed in POSIX, an old standard designed to make

code portable between Unix systems. While POSIX isn’t strictly followed by most tools or

operating systems, many of its conventions are still shared.

If [an exec syscall] fails due to an error equivalent to the [ENOEXEC] error, the shell shall

execute a command equivalent to having a shell invoked with the command name as

its �rst operand, with any remaining arguments passed to the new shell. If the executable

�le is not a text �le, the shell may bypass this command execution. In this case, it shall

write an error message and shall return an exit status of 126.

Source: Shell Command Language, POSIX.1-2017

Computers are so cool!

https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/POSIX
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/utilities/V3_chap02.html#tag_18_09_01_01

Chapter 4: Becoming an Elf-Lord

We pretty thoroughly understand execve now. At the end of most paths, the kernel will reach a

�nal program containing machine code for it to launch. Typically, a setup process is required

before actually jumping to the code — for example, different parts of the program have to be

loaded into the right places in memory. Each program needs different amounts of memory for

different things, so we have standard �le formats that specify how to set up a program for

execution. While Linux supports many such formats, the most common format by far is ELF

(executable and linkable format).

(Thank you to Nicky Case for the adorable drawing.)

https://ncase.me/

Aside: are elves everywhere?

When you run an app or command-line program on Linux, it’s exceedingly likely that it’s

an ELF binary. However, on macOS the de-facto format is Mach-O instead. Mach-O does all

the same things as ELF but is structured differently. On Windows, .exe �les use the

Portable Executable format which is, again, a different format with the same concept.

In the Linux kernel, ELF binaries are handled by the binfmt_elf handler, which is more

complex than many other handlers and contains thousands of lines of code. It’s responsible for

parsing out certain details from the ELF �le and using them to load the process into memory

and execute it.

I ran some command-line kung fu to sort binfmt handlers by line count:

Shell session

$ wc -l binfmt_* | sort -nr | sed 1d
 2181 binfmt_elf.c
 1658 binfmt_elf_fdpic.c
 944 binfmt_flat.c
 836 binfmt_misc.c
 158 binfmt_script.c
 64 binfmt_elf_test.c

File Structure

Before looking more deeply at how binfmt_elf executes ELF �les, let’s take a look at the �le

format itself. ELF �les are typically made up of four parts:

https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable

ELF Header

Every ELF �le has an ELF header. It has the very important job of conveying basic information

about the binary such as:

What processor it’s designed to run on. ELF �les can contain machine code for different

processor types, like ARM and x86.

Whether the binary is meant to be run on its own as an executable, or whether it’s meant

to be loaded by other programs as a “dynamically linked library.” We’ll go into details

about what dynamic linking is soon.

The entry point of the executable. Later sections specify exactly where to load data

contained in the ELF �le into memory. The entry point is a memory address pointing to

where the �rst machine code instruction is in memory after the entire process has been

loaded.

The ELF header is always at the start of the �le. It speci�es the locations of the program header

table and section header, which can be anywhere within the �le. Those tables, in turn, point to

data stored elsewhere in the �le.

https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html

Program Header Table

The program header table is a series of entries containing speci�c details for how to load and

execute the binary at runtime. Each entry has a type �eld that says what detail it’s specifying —

for example, PT_LOAD means it contains data that should be loaded into memory, but PT_NOTE

means the segment contains informational text that shouldn’t necessarily be loaded anywhere.

Each entry speci�es information about where its data is in the �le and, sometimes, how to load

the data into memory:

It points to the position of its data within the ELF �le.

It can specify what virtual memory address the data should be loaded into memory at.

This is typically left blank if the segment isn’t meant to be loaded into memory.

Two �elds specify the length of the data: one for the length of the data in the �le, and one

for the length of the memory region to be created. If the memory region length is longer

than the length in the �le, the extra memory will be �lled with zeroes. This is bene�cial

for programs that might want a static segment of memory to use at runtime; these empty

segments of memory are typically called BSS segments.

Finally, a �ags �eld speci�es what operations should be permitted if it’s loaded into

memory: PF_R makes it readable, PF_W makes it writable, and PF_X means it’s code that

should be allowed to execute on the CPU.

Section Header Table

The section header table is a series of entries containing information about sections. This

section information is like a map, charting the data inside the ELF �le. It makes it easy for

https://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html
https://en.wikipedia.org/wiki/.bss
https://refspecs.linuxbase.org/elf/gabi4+/ch4.sheader.html

programs like debuggers to understand the intended uses of different portions of the data.

For example, the program header table can specify a large swath of data to be loaded into

memory together. That single PT_LOAD block might contain both code and global variables!

There’s no reason those have to be speci�ed separately to run the program; the CPU just starts

at the entry point and steps forward, accessing data when and where the program requests it.

However, software like a debugger for analyzing the program needs to know exactly where each

area starts and ends, otherwise it might try to decode some text that says “hello” as code (and

since that isn’t valid code, explode). This information is stored in the section header table.

While it’s usually included, the section header table is actually optional. ELF �les can run

perfectly well with the section header table completely removed, and developers who want to

hide what their code does will sometimes intentionally strip or mangle the section header table

from their ELF binaries to make them harder to decode.

Each section has a name, a type, and some �ags that specify how it’s intended to be used and

decoded. Standard names usually start with a dot by convention. The most common sections

are:

https://www.sourceware.org/gdb/
https://binaryresearch.github.io/2019/09/17/Analyzing-ELF-Binaries-with-Malformed-Headers-Part-1-Emulating-Tiny-Programs.html

.text: machine code to be loaded into memory and executed on the CPU. SHT_PROGBITS

type with the SHF_EXECINSTR �ag to mark it as executable, and the SHF_ALLOC �ag which

means it’s loaded into memory for execution. (Don’t get confused by the name, it’s still

just binary machine code! I always found it somewhat strange that it’s called .text

despite not being readable “text.“)

.data: initialized data hardcoded in the executable to be loaded into memory. For

example, a global variable containing some text might be in this section. If you write low-

level code, this is the section where statics go. This also has the type SHT_PROGBITS, which

just means the section contains “information for the program.” Its �ags are SHF_ALLOC

and SHF_WRITE to mark it as writable memory.

.bss: I mentioned earlier that it’s common to have some allocated memory that starts out

zeroed. It would be a waste to include a bunch of empty bytes in the ELF �le, so a special

segment type called BSS is used. It’s helpful to know about BSS segments during

debugging, so there’s also a section header table entry that speci�es the length of the

memory to be allocated. It’s of type SHT_NOBITS, and is �agged SHF_ALLOC and SHF_WRITE.

.rodata: this is like .data except it’s read-only. In a very basic C program that runs

printf("Hello, world!"), the string “Hello world!” would be in a .rodata section, while

the actual printing code would be in a .text section.

.shstrtab: this is a fun implementation detail! The names of sections themselves (like

.text and .shstrtab) aren’t included directly in the section header table. Instead, each

entry contains an offset to a location in the ELF �le that contains its name. This way, each

entry in the section header table can be the same size, making them easier to parse — an

offset to the name is a �xed-size number, whereas including the name in the table would

use a variable-size string. All of this name data is stored in its own section called

.shstrtab, of type SHT_STRTAB.

Data

The program and section header table entries all point to blocks of data within the ELF �le,

whether to load them into memory, to specify where program code is, or just to name sections.

All of these different pieces of data are contained in the data section of the ELF �le.

A Brief Explanation of Linking

Back to the binfmt_elf code: the kernel cares about two types of entries in the program header

table.

PT_LOAD segments specify where all the program data, like the .text and .data sections, need

to be loaded into memory. The kernel reads these entries from the ELF �le to load the data into

memory so the program can be executed by the CPU.

The other type of program header table entry that the kernel cares about is PT_INTERP, which

speci�es a “dynamic linking runtime.”

Before we talk about what dynamic linking is, let’s talk about “linking” in general.

Programmers tend to build their programs on top of libraries of reusable code — for example,

libc, which we talked about earlier. When turning your source code into an executable binary, a

program called a linker resolves all these references by �nding the library code and copying it

into the binary. This process is called static linking, which means external code is included

directly in the �le that’s distributed.

However, some libraries are super common. You’ll �nd libc is used by basically every program

under the sun, since it’s the canonical interface for interacting with the OS through syscalls. It

would be a terrible use of space to include a separate copy of libc in every single program on

your computer. Also, it might be nice if bugs in libraries could be �xed in one place rather than

having to wait for each program that uses the library to be updated. Dynamic linking is the

solution to these problems.

If a statically linked program needs a function foo from a library called bar, the program would

include a copy of the entirety of foo. However, if it’s dynamically linked it would only include a

reference saying “I need foo from library bar.” When the program is run, bar is hopefully

installed on the computer and the foo function’s machine code can be loaded into memory on-

demand. If the computer’s installation of the bar library is updated, the new code will be

loaded the next time the program runs without needing any change in the program itself.

Dynamic Linking in the Wild

On Linux, dynamically linkable libraries like bar are typically packaged into �les with the .so

(Shared Object) extension. These .so �les are ELF �les just like programs — you may recall that

the ELF header includes a �eld to specify whether the �le is an executable or a library. In

addition, shared objects have a .dynsym section in the section header table which contains

information on what symbols are exported from the �le and can be dynamically linked to.

On Windows, libraries like bar are packaged into .dll (dynamic link library) �les. macOS uses

the .dylib (dynamically linked library) extension. Just like macOS apps and Windows .exe �les,

these are formatted slightly differently from ELF �les but are the same concept and technique.

An interesting distinction between the two types of linking is that with static linking, only the

portions of the library that are used are included in the executable and thus loaded into

memory. With dynamic linking, the entire library is loaded into memory. This might initially

sound less ef�cient, but it actually allows modern operating systems to save more space by

loading a library into memory once and then sharing that code between processes. Only code

can be shared as the library needs different state for different programs, but the savings can

still be on the order of tens to hundreds of megabytes of RAM.

Execution

Let’s hop on back to the kernel running ELF �les: if the binary it’s executing is dynamically

linked, the OS can’t just jump to the binary’s code right away because there would be missing

code — remember, dynamically linked programs only have references to the library functions

they need!

To run the binary, the OS needs to �gure out what libraries are needed, load them, replace all

the named pointers with actual jump instructions, and then start the actual program code. This

is very complex code that interacts deeply with the ELF format, so it’s usually a standalone

program rather than part of the kernel. ELF �les specify the path to the program they want to

use (typically something like /lib64/ld-linux-x86-64.so.2) in a PT_INTERP entry in the

program header table.

After reading the ELF header and scanning through the program header table, the kernel can

set up the memory structure for the new program. It starts by loading all PT_LOAD segments

into memory, populating the program’s static data, BSS space, and machine code. If the

program is dynamically linked, the kernel will have to execute the ELF interpreter (PT_INTERP),

so it also loads the interpreter’s data, BSS, and code into memory.

Now the kernel needs to set the instruction pointer for the CPU to restore when returning to

userland. If the executable is dynamically linked, the kernel sets the instruction pointer to the

start of the ELF interpreter’s code in memory. Otherwise, the kernel sets it to the start of the

executable.

The kernel is almost ready to return from the syscall (remember, we’re still in execve). It

pushes the argc, argv, and environment variables to the stack for the program to read when it

https://unix.stackexchange.com/questions/400621/what-is-lib64-ld-linux-x86-64-so-2-and-why-can-it-be-used-to-execute-file

begins.

The registers are now cleared. Before handling a syscall, the kernel stores the current value of

registers to the stack to be restored when switching back to user space. Before returning to

user space, the kernel zeroes this part of the stack.

Finally, the syscall is over and the kernel returns to userland. It restores the registers, which

are now zeroed, and jumps to the stored instruction pointer. That instruction pointer is now

the starting point of the new program (or the ELF interpreter) and the current process has been

replaced!

Chapter 5: The Translator in Your Computer

Up until now, every time I’ve talked about reading and writing memory was a little wishy-

washy. For example, ELF �les specify speci�c memory addresses to load data into, so why

aren’t there problems with different processes trying to use con�icting memory? Why does

each process seem to have a different memory environment?

Also, how exactly did we get here? We understand that execve is a syscall that replaces the

current process with a new program, but this doesn’t explain how multiple processes can be

started. It de�nitely doesn’t explain how the very �rst program runs — what chicken (process)

lays (spawns) all the other eggs (other processes)?

We’re nearing the end of our journey. After these two questions are answered, we’ll have a

mostly complete understanding of how your computer got from bootup to running the software

you’re using right now.

Memory is Fake

So… about memory. It turns out that when the CPU reads from or writes to a memory address,

it’s not actually referring to that location in physical memory (RAM). Rather, it’s pointing to a

location in virtual memory space.

The CPU talks to a chip called a memory management unit (MMU). The MMU works like a

translator with a dictionary that translates locations in virtual memory to locations in RAM.

When the CPU is given an instruction to read from memory address 0xAD4DA83F, it asks the

MMU to translate that address. The MMU looks it up in the dictionary, discovers that the

matching physical address is 0x70B7BD74, and sends the number back to the CPU. The CPU can

then read from that address in RAM.

https://en.wikipedia.org/wiki/Memory_management_unit

When the computer �rst boots up, memory accesses go directly to physical RAM. Immediately

after startup, the OS creates the translation dictionary and tells the CPU to start using the MMU.

This dictionary is actually called a page table, and this system of translating every memory

access is called paging. Entries in the page table are called pages and each one represents how a

certain chunk of virtual memory maps to RAM. These chunks are always a �xed size, and each

processor architecture has a different page size. x86-64 has a default 4 KiB page size, meaning

each page speci�es the mapping for a block of memory 4,096 bytes long. (x86-64 also allows

operating systems to enable larger 2 MiB or 4 GiB pages, which can improve address

translation speed but increase memory fragmentation and waste.)

The page table itself just resides in RAM. While it can contain millions of entries, each entry’s

size is only on the order of a couple bytes, so the page table doesn’t take up too much space.*

To enable paging at boot, the kernel �rst constructs the page table in RAM. Then, it stores the

physical address of the start of the page table in a register called the page table base register

(PTBR). Finally, the kernel enables paging to translate all memory accesses with the MMU. On

x86-64, the top 20 bits of control register 3 (CR3) function as the PTBR. Bit 31 of CR0,

designated PG for Paging, is set to 1 to enable paging.

The magic of the paging system is that the page table can be edited while the computer is

running. This is how each process can have its own isolated memory space — when the OS

switches context from one process to another, an important task is remapping the virtual

memory space to a different area in physical memory. Let’s say you have two processes:

process A can have its code and data (likely loaded from an ELF �le!) at 0x0000000000400000,

and process B can access its code and data from the very same address. Those two processes

can even be instances of the same program, because they aren’t actually �ghting over that

address range! The data for process A is somewhere far from process B in physical memory,

and is mapped to 0x0000000000400000 by the kernel when switching to the process.

Aside: cursed ELF fact

In certain situations, binfmt_elf has to map the �rst page of memory to zeroes. Some

programs written for UNIX System V Release 4.0 (SVr4), an OS from 1988 that was the �rst

to support ELF, rely on null pointers being readable. And somehow, some programs still

rely on that behavior.

It seems like the Linux kernel dev implementing this was a little disgruntled:

“Why this, you ask??? Well SVr4 maps page 0 as read-only, and some applications ‘depend’ upon this

behavior. Since we do not have the power to recompile these, we emulate the SVr4 behavior. Sigh.”

Sigh.

Security with Paging

The process isolation enabled by memory paging improves code ergonomics (processes don’t

need to be aware of other processes to use memory), but it also creates a level of security:

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/binfmt_elf.c#L1322-L1329

processes cannot access memory from other processes. This half answers one of the original

questions from the start of this article:

If programs run directly on the CPU, and the CPU can directly access RAM, why can’t code

access memory from other processes, or, god forbid, the kernel?

Remember that? It feels like so long ago…

What about that kernel memory, though? First things �rst: the kernel obviously needs to store

plenty of data of its own to keep track of all the processes running and even the page table

itself. Every time a hardware interrupt, software interrupt, or system call is triggered and the

CPU enters kernel mode, the kernel code needs to access that memory somehow.

Linux’s solution is to always allocate the top half of the virtual memory space to the kernel, so

Linux is called a higher half kernel. Windows employs a similar technique, while macOS is…

slightly more complicated and caused my brain to ooze out of my ears reading about it. ~(++)~

It would be terrible for security if userland processes could read or write kernel memory

though, so paging enables a second layer of security: each page must specify permission �ags.

One �ag determines whether the region is writable or only readable. Another �ag tells the CPU

that only kernel mode is allowed to access the region’s memory. This latter �ag is used to

protect the entire higher half kernel space — the entire kernel memory space is actually

available in the virtual memory mapping for user space programs, they just don’t have the

permissions to access it.

https://wiki.osdev.org/Higher_Half_Kernel
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-memory-space
https://www.researchgate.net/figure/Overview-of-the-Mac-OS-X-virtual-memory-system-which-resides-inside-the-Mach-portion-of_fig1_264086271
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/vm/vm.html

The page table itself is actually contained within the kernel memory space! When the timer

chip triggers a hardware interrupt for process switching, the CPU switches the privilege level to

kernel mode and jumps to Linux kernel code. Being in kernel mode (Intel ring 0) allows the

CPU to access the kernel-protected memory region. The kernel can then write to the page table

(residing somewhere in that upper half of memory) to remap the lower half of virtual memory

for the new process. When the kernel switches to the new process and the CPU enters user

mode, it can no longer access any of the kernel memory.

Just about every memory access goes through the MMU. Interrupt descriptor table handler

pointers? Those address the kernel’s virtual memory space as well.

Hierarchical Paging and Other Optimizations

64-bit systems have memory addresses that are 64 bits long, meaning the 64-bit virtual

memory space is a whopping 16 exbibytes in size. That is incredibly large, far larger than any

computer that exists today or will exist any time soon. As far as I can tell, the most RAM in any

computer ever was in the Blue Waters supercomputer, with over 1.5 petabytes of RAM. That’s

still less than 0.01% of 16 EiB.

If an entry in the page table was required for every 4 KiB section of virtual memory space, you

would need 4,503,599,627,370,496 page table entries. With 8-byte-long page table entries, you

would need 32 pebibytes of RAM just to store the page table alone. You may notice that’s still

larger than the world record for the most RAM in a computer.

https://en.wiktionary.org/wiki/exbibyte
https://en.wikipedia.org/wiki/Blue_Waters

Aside: why the weird units?

I know it’s uncommon and really ugly, but I �nd it important to clearly differentiate

between binary byte size units (powers of 2) and metric ones (powers of 10). A kilobyte, kB,

is an SI unit that means 1,000 bytes. A kibibyte, KiB, is an IEC-recommended unit that

means 1,024 bytes. In terms of CPUs and memory addresses, byte counts are usually

powers of two because computers are binary systems. Using KB (or worse, kB) to mean

1,024 would be more ambiguous.

Since it would be impossible (or at least incredibly impractical) to have sequential page table

entries for the entire possible virtual memory space, CPU architectures implement hierarchical

paging. In hierarchical paging systems, there are multiple levels of page tables of increasingly

small granularity. The top level entries cover large blocks of memory and point to page tables

of smaller blocks, creating a tree structure. The individual entries for blocks of 4 KiB or

whatever the page size is are the leaves of the tree.

x86-64 historically uses 4-level hierarchical paging. In this system, each page table entry is

found by offsetting the start of the containing table by a portion of the address. This portion

starts with the most signi�cant bits, which work as a pre�x so the entry covers all addresses

starting with those bits. The entry points to the start of the next level of table containing the

subtrees for that block of memory, which are again indexed with the next collection of bits.

The designers of x86-64’s 4-level paging also chose to ignore the top 16 bits of all virtual

pointers to save page table space. 48 bits gets you a 128 TiB virtual address space, which was

deemed to be large enough. (The full 64 bits would get you 16 EiB, which is kind of a lot.)

Since the �rst 16 bits are skipped, the “most signi�cant bits” for indexing the �rst level of the

page table actually start at bit 47 rather than 63. This also means the higher half kernel

diagram from earlier in this chapter was technically inaccurate; the kernel space start address

should’ve been depicted as the midpoint of an address space smaller than 64 bits.

Hierarchical paging solves the space problem because at any level of the tree, the pointer to the

next entry can be null (0x0). This allows entire subtrees of the page table to be elided, meaning

unmapped areas of the virtual memory space don’t take up any space in RAM. Lookups at

unmapped memory addresses can fail quickly because the CPU can error as soon as it sees an

empty entry higher up in the tree. Page table entries also have a presence �ag that can be used

to mark them as unusable even if the address appears valid.

Another bene�t of hierarchical paging is the ability to ef�ciently switch out large sections of

the virtual memory space. A large swath of virtual memory might be mapped to one area of

physical memory for one process, and a different area for another process. The kernel can

store both mappings in memory and simply update the pointers at the top level of the tree

when switching processes. If the entire memory space mapping was stored as a �at array of

entries, the kernel would have to update a lot of entries, which would be slow and still require

independently keeping track of the memory mappings for each process.

I said x86-64 “historically” uses 4-level paging because recent processors implement 5-level

paging. 5-level paging adds another level of indirection as well as 9 more addressing bits to

expand the address space to 128 PiB with 57-bit addresses. 5-level paging is supported by

operating systems including Linux since 2017 as well as recent Windows 10 and 11 server

versions.

https://en.wikipedia.org/wiki/Intel_5-level_paging
https://lwn.net/Articles/717293/

Aside: physical address space limits

Just as operating systems don’t use all 64 bits for virtual addresses, processors don’t use

entire 64-bit physical addresses. When 4-level paging was the standard, x86-64 CPUs

didn’t use more than 46 bits, meaning the physical address space was limited to only 64

TiB. With 5-level paging, support has been extended to 52 bits, supporting a 4 PiB physical

address space.

On the OS level, it’s advantageous for the virtual address space to be larger than the

physical address space. As Linus Torvalds said, “[i]t needs to be bigger, by a factor of at

least two, and that’s quite frankly pushing it, and you’re much better off having a factor of

ten or more. Anybody who doesn’t get that is a moron. End of discussion.”

Swapping and Demand Paging

A memory access might fail for a couple reasons: the address might be out of range, it might

not be mapped by the page table, or it might have an entry that’s marked as not present. In any

of these cases, the MMU will trigger a hardware interrupt called a page fault to let the kernel

handle the problem.

In some cases, the read was truly invalid or prohibited. In these cases, the kernel will probably

terminate the program with a segmentation fault error.

Shell session

$./program
Segmentation fault (core dumped)
$

Aside: segfault ontology

“Segmentation fault” means different things in different contexts. The MMU triggers a

hardware interrupt called a “segmentation fault” when memory is read without

permission, but “segmentation fault” is also the name of a signal the OS can send to

running programs to terminate them due to any illegal memory access.

https://www.realworldtech.com/forum/?threadid=76912&curpostid=76973
https://en.wikipedia.org/wiki/Segmentation_fault

In other cases, memory accesses can intentionally fail, allowing the OS to populate the memory

and then hand control back to the CPU to try again. For example, the OS can map a �le on disk to

virtual memory without actually loading it into RAM, and then load it into physical memory

when the address is requested and a page fault occurs. This is called demand paging.

For one, this allows syscalls like mmap that lazily map entire �les from disk to virtual memory

to exist. If you’re familiar with LLaMa.cpp, a runtime for a leaked Facebook language model,

Justine Tunney recently signi�cantly optimized it by making all the loading logic use mmap. (If

you haven’t heard of her before, check her stuff out! Cosmopolitan Libc and APE are really cool

and might be interesting if you’ve been enjoying this article.)

Apparently there’s a lot of drama about Justine’s involvement in this change. Just pointing this out so

I don’t get screamed at by random internet users. I must confess that I haven’t read most of the

drama, and everything I said about Justine’s stuff being cool is still very true.

When you execute a program and its libraries, the kernel doesn’t actually load anything into

memory. It only creates an mmap of the �le — when the CPU tries to execute the code, the page

immediately faults and the kernel replaces the page with a real block of memory.

Demand paging also enables the technique that you’ve probably seen under the name

“swapping” or “paging.” Operating systems can free up physical memory by writing memory

pages to disk and then removing them from physical memory but keeping them in virtual

memory with the present �ag set to 0. If that virtual memory is read, the OS can then restore

https://man7.org/linux/man-pages/man2/mmap.2.html
https://justine.lol/mmap/
https://justine.lol/
https://rentry.org/Jarted
https://news.ycombinator.com/item?id=35413289
https://news.ycombinator.com/item?id=35458004

the memory from disk to RAM and set the present �ag back to 1. The OS may have to swap a

different section of RAM to make space for the memory being loaded from disk. Disk reads and

writes are slow, so operating systems try to make swapping happen as little as possible with

ef�cient page replacement algorithms.

An interesting hack is to use page table physical memory pointers to store the locations of �les

within physical storage. Since the MMU will page fault as soon as it sees a negative present �ag,

it doesn’t matter that they are invalid memory addresses. This isn’t practical in all cases, but

it’s amusing to think about.

https://en.wikipedia.org/wiki/Page_replacement_algorithm

Chapter 6: Let's Talk About Forks and Cows

The �nal question: how did we get here? Where do the �rst processes come from?

This article is almost done. We’re on the �nal stretch. About to hit a home run. Moving on to

greener pastures. And various other terrible idioms that mean you are a single Length of Chapter

6 away from touching grass or whatever you do with your time when you aren’t reading 15,000

word articles about CPU architecture.

If execve starts a new program by replacing the current process, how do you start a new

program separately, in a new process? This is a pretty important ability if you want to do

multiple things on your computer; when you double-click an app to start it, the app opens

separately while the program you were previously on continues running.

The answer is another system call: fork, the system call fundamental to all multiprocessing.

fork is quite simple, actually — it clones the current process and its memory, leaving the saved

instruction pointer exactly where it is, and then allows both processes to proceed as usual.

Without intervention, the programs continue to run independently from each other and all

computation is doubled.

The newly running process is referred to as the “child,” with the process originally calling fork

the “parent.” Processes can call fork multiple times, thus having multiple children. Each child

is numbered with a process ID (PID), starting with 1.

Cluelessly doubling the same code is pretty useless, so fork returns a different value on the

parent vs the child. On the parent, it returns the PID of the new child process, while on the

child it returns 0. This makes it possible to do different work on the new process so that forking

is actually helpful.

main.c

pid_t pid = fork();

// Code continues from this point as usual, but now across
// two "identical" processes.
//
// Identical... except for the PID returned from fork!
//
// This is the only indicator to either program that they
// are not one of a kind.

if (pid == 0) {
// We're in the child.
// Do some computation and feed results to the parent!

} else {
// We're in the parent.
// Probably continue whatever we were doing before.

}

Process forking can be a bit hard to wrap your head around. From this point on I will assume

you’ve �gured it out; if you have not, check out this hideous-looking website for a pretty good

explainer.

Anyways, Unix programs launch new programs by calling fork and then immediately running

execve in the child process. This is called the fork-exec pattern. When you run a program, your

computer executes code similar to the following:

https://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html

launcher.c

pid_t pid = fork();

if (pid == 0) {
// Immediately replace the child process with the new program.
execve(...);

}

// Since we got here, the process didn't get replaced. We're in the parent!
// Helpfully, we also now have the PID of the new child process in the PID
// variable, if we ever need to kill it.

// Parent program continues here...

Mooooo!

You might’ve noticed that duplicating a process’s memory only to immediately discard all of it

when loading a different program sounds a bit inef�cient. Luckily, we have an MMU.

Duplicating data in physical memory is the slow part, not duplicating page tables, so we simply

don’t duplicate any RAM: we create a copy of the old process’s page table for the new process

and keep the mapping pointing to the same underlying physical memory.

But the child process is supposed to be independent and isolated from the parent! It’s not okay

for the child to write to the parent’s memory, or vice versa!

Introducing COW (copy on write) pages. With COW pages, both processes read from the same

physical addresses as long as they don’t attempt to write to the memory. As soon as one of

them tries to write to memory, that page is copied in RAM. COW pages allow both processes to

have memory isolation without an upfront cost of cloning the entire memory space. This is why

the fork-exec pattern is ef�cient; since none of the old process’s memory is written to before

loading a new binary, no memory copying is necessary.

COW is implemented, like many fun things, with paging hacks and hardware interrupt

handling. After fork clones the parent, it �ags all of the pages of both processes as read-only.

When a program writes to memory, the write fails because the memory is read-only. This

triggers a segfault (the hardware interrupt kind) which is handled by the kernel. The kernel

which duplicates the memory, updates the page to allow writing, and returns from the

interrupt to reattempt the write.

A: Knock, knock!

B: Who’s there?

A: Interrupting cow.

B: Interrupting cow wh —

A: MOOOOO!

In the Beginning (Not Genesis 1:1)

Every process on your computer was fork-execed by a parent program, except for one: the init

process. The init process is set up manually, directly by the kernel. It is the �rst userland

program to run and the last to be killed at shutdown.

Want to see a cool instant blackscreen? If you’re on macOS or Linux, save your work, open a

terminal, and kill the init process (PID 1):

Shell session

$ sudo kill 1

Author’s note: knowledge about init processes, unfortunately, only applies to Unix-like systems like

macOS and Linux. Most of what you learn from now on will not apply to understanding Windows,

which has a very different kernel architecture.

Just like the section on execve, I am explicitly addressing this — I could write another entire article

on the NT kernel, but I am holding myself back from doing so. (For now.)

The init process is responsible for spawning all of the programs and services that make up

your operating system. Many of those, in turn, spawn their own services and programs.

Killing the init process kills all of its children and all of their children, shutting down your OS

environment.

Back to the Kernel

We had a lot of fun looking at Linux kernel code [back in chapter 3], so we’re gonna do some

more of that! This time we’ll start with a look at how the kernel starts the init process.

Your computer boots up in a sequence like the following:

1. The motherboard is bundled with a tiny piece of software that searches your connected

disks for a program called a bootloader. It picks a bootloader, loads its machine code into

RAM, and executes it.

Keep in mind that we are not yet in the world of a running OS. Until the OS kernel starts

an init process, multiprocessing and syscalls don’t really exist. In the pre-init context,

“executing” a program means directly jumping to its machine code in RAM without

expectation of return.

2. The bootloader is responsible for �nding a kernel, loading it into RAM, and executing it.

Some bootloaders, like GRUB, are con�gurable and/or let you select between multiple

http://127.0.0.1:3000/how-to-run-a-program
https://www.gnu.org/software/grub/

operating systems. BootX and Windows Boot Manager are the built-in bootloaders of

macOS and Windows, respectively.

3. The kernel is now running and begins a large routine of initialization tasks including

setting up interrupt handlers, loading drivers, and creating the initial memory mapping.

Finally, the kernel switches the privilege level to user mode and starts the init program.

4. We’re �nally in userland in an operating system! The init program begins running init

scripts, starting services, and executing programs like the shell/UI.

Initializing Linux

On Linux, the bulk of step 3 (kernel initialization) occurs in the start_kernel function in

init/main.c. This function is over 200 lines of calls to various other init functions, so I won’t

include the whole thing in this article, but I do recommend scanning through it! At the end of

start_kernel a function named arch_call_rest_init is called:

start_kernel @ init/main.c

1087
1088

/* Do the rest non-__init'ed, we're now alive */
arch_call_rest_init();

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L880-L1091
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1087-L1088

What does non-__init’ed mean?

The start_kernel function is de�ned as asmlinkage __visible void __init

__no_sanitize_address start_kernel(void). The weird keywords like __visible,

__init, and __no_sanitize_address are all C preprocessor macros used in the Linux

kernel to add various code or behaviors to a function.

In this case, __init is a macro that instructs the kernel to free the function and its data

from memory as soon as the boot process is completed, simply to save space.

How does it work? Without getting too deep into the weeds, the Linux kernel is itself

packaged as an ELF �le. The __init macro expands to __section(".init.text"), which is

a compiler directive to place the code in a section called .init.text instead of the usual

.text section. Other macros allow data and constants to be placed in special init sections

as well, such as __initdata that expands to __section(".init.data").

arch_call_rest_init is nothing but a wrapper function:

init/main.c

832
833
834
835

void __init __weak arch_call_rest_init(void)
{

rest_init();
}

The comment said “do the rest non-__init’ed” because rest_init is not de�ned with the

__init macro. This means it is not freed when cleaning up init memory:

init/main.c

689
690

noinline void __ref rest_init(void)
{

rest_init now creates a thread for the init process:

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L832-L835
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L689-L690

rest_init @ init/main.c

695
696
697
698
699
700

/*
 * We need to spawn init first so that it obtains pid 1, however
 * the init task will end up wanting to create kthreads, which, if
 * we schedule it before we create kthreadd, will OOPS.
 */
pid = user_mode_thread(kernel_init, NULL, CLONE_FS);

The kernel_init parameter passed to user_mode_thread is a function that �nishes some

initialization tasks and then searches for a valid init program to execute it. This procedure

starts with some basic setup tasks; I will skip through these for the most part, except for where

free_initmem is called. This is where the kernel frees our .init sections!

kernel_init @ init/main.c

1471 free_initmem();

Now the kernel can �nd a suitable init program to run:

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L695-L700
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1471

kernel_init @ init/main.c

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

/*
 * We try each of these until one succeeds.
 *
 * The Bourne shell can be used instead of init if we are
 * trying to recover a really broken machine.
 */
if (execute_command) {

ret = run_init_process(execute_command);
if (!ret)

return 0;
panic("Requested init %s failed (error %d).",
 execute_command, ret);

}

if (CONFIG_DEFAULT_INIT[0] != '\0') {
ret = run_init_process(CONFIG_DEFAULT_INIT);
if (ret)

pr_err("Default init %s failed (error %d)\n",
 CONFIG_DEFAULT_INIT, ret);

else
return 0;

}

if (!try_to_run_init_process("/sbin/init") ||
 !try_to_run_init_process("/etc/init") ||
 !try_to_run_init_process("/bin/init") ||
 !try_to_run_init_process("/bin/sh"))

return 0;

panic("No working init found. Try passing init= option to kernel. "
 "See Linux Documentation/admin-guide/init.rst for guidance.");

On Linux, the init program is almost always located at or symbolic-linked to /sbin/init.

Common inits include systemd (which has an abnormally good website), OpenRC, and runit.

kernel_init will default to /bin/sh if it can’t �nd anything else — and if it can’t �nd /bin/sh,

something is TERRIBLY wrong.

MacOS has an init program, too! It’s called launchd and is located at /sbin/launchd. Try running that

in a terminal to get yelled for not being a kernel.

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1495-L1525
https://systemd.io/
https://wiki.gentoo.org/wiki/OpenRC/openrc-init
http://smarden.org/runit/

From this point on, we’re at step 4 in the boot process: the init process is running in userland

and begins launching various programs using the fork-exec pattern.

Fork Memory Mapping

I was curious how the Linux kernel remaps the bottom half of memory when forking processes,

so I poked around a bit. kernel/fork.c seems to contain most of the code for forking processes.

The start of that �le helpfully pointed me to the right place to look:

kernel/fork.c

8
9
10
11
12
13

/*
 * 'fork.c' contains the help-routines for the 'fork' system call
 * (see also entry.S and others).
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 */

It looks like this copy_page_range function takes some information about a memory mapping

and copies the page tables. Quickly skimming through the functions it calls, this is also where

pages are set to be read-only to make them COW pages. It checks whether it should do this by

calling a function called is_cow_mapping.

is_cow_mapping is de�ned back in include/linux/mm.h, and returns true if the memory

mapping has �ags that indicate the memory is writeable and isn’t shared between processes.

Shared memory doesn’t need to be COWed because it is designed to be shared. Admire the

slightly incomprehensible bitmasking:

include/linux/mm.h

1541
1542
1543
1544

static inline bool is_cow_mapping(vm_flags_t flags)
{

return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c#L8-L13
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/mm.h
http://books.gigatux.nl/mirror/kerneldevelopment/0672327201/ch14lev1sec2.html
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/mm.h#L1541-L1544

Back in kernel/fork.c, doing a simple Command-F for copy_page_range yields one call from the

dup_mmap function… which is in turn called by dup_mm… which is called by copy_mm… which is

�nally called by the massive copy_process function! copy_process is the core of the fork

function, and, in a way, the centerpoint of how Unix systems execute programs — always

copying and editing a template created for the �rst process at startup.

cows & cows & cowscows & cows & cows

In Summary…

So… how do programs run?

On the lowest level: processors are dumb. They have a pointer into memory and execute

instructions in a row, unless they reach an instruction that tells them to jump somewhere else.

Besides jump instructions, hardware and software interrupts can also break the sequence of

execution by jumping to a preset location that can then choose where to jump to. Processor

cores can’t run multiple programs at once, but this can be simulated by using a timer to

repeatedly trigger interrupts and allowing kernel code to switch between different code

pointers.

https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c
https://www.youtube.com/watch?v=FavUpD_IjVY

Programs are tricked into believing they’re running as a coherent, isolated unit. Direct access to

system resources is prevented in user mode, memory space is isolated using paging, and

system calls are designed to allow generic I/O access without too much knowledge about the

true execution context. System calls are instructions that ask the CPU to run some kernel code,

the location of which is con�gured by the kernel at startup.

But… how do programs run?

After the computer starts up, the kernel launches the init process. This is the �rst program

running at the higher level of abstraction where its machine code doesn’t have to worry about

many speci�c system details. The init program launches the programs that render your

computer’s graphical environment and are responsible for launching other software.

To launch a program, it clones itself with the fork syscall. This cloning is ef�cient because all of

the memory pages are COW and the memory doesn’t need to be copied within physical RAM.

On Linux, this is the copy_process function in action.

Both processes check if they’re the forked process. If they are, they use an exec syscall to ask

the kernel to replace the current process with a new program.

The new program is probably an ELF �le, which the kernel parses to �nd information on how

to load the program and where to place its code and data within the new virtual memory

mapping. The kernel might also prepare an ELF interpreter if the program is dynamically

linked.

The kernel can then load the program’s virtual memory mapping and return to userland with

the program running, which really means setting the CPU’s instruction pointer to the start of

the new program’s code in virtual memory.

Chapter 7: Epilogue

Congratulations! We have now �rmly placed the “you” in CPU. I hope you had fun.

I will send you off by emphasizing once more that all the knowledge you just gained is real and

active. The next time you think about how your computer is running multiple apps, I hope you

envision timer chips and hardware interrupts. When you write a program in some fancy

programming language and get a linker error, I hope you think about what that linker is trying

to do.

If you have any questions (or corrections) about anything contained in this article, you should

email me at lexi@hackclub.com or submit an issue or PR on GitHub.

… but wait, there’s more!

Bonus: Translating C Concepts

If you’ve done some low-level programming yourself, you probably know what the stack and

the heap are and you’ve probably used malloc. You might not have thought a lot about how

they’re implemented!

mailto:lexi@hackclub.com
https://github.com/hackclub/putting-the-you-in-cpu/

First of all, a thread’s stack is a �xed amount of memory that’s mapped to somewhere high up

in virtual memory. On most (although not all) architectures, the stack pointer starts at the top

of the stack memory and moves downward as it increments. Physical memory is not allocated

up-front for the entire mapped stack space; instead, demand paging is used to lazily allocate

memory as frames of the stack are reached.

It might be surprising to hear that heap allocation functions like malloc are not system calls.

Instead, heap memory management is provided by the libc implementation! malloc, free, et

al. are complex procedures, and the libc keeps track of memory mapping details itself. Under

the hood, the userland heap allocator uses syscalls including mmap (which can map more than

just �les) and sbrk.

Bonus: Tidbits

I couldn’t �nd anywhere coherent to put these, but found them amusing, so here you go.

Most Linux users probably have a suf�ciently interesting life that they spend little time imagining

how page tables are represented in the kernel.

Jonathan Corbet, LWN

An alternate visualization of hardware interrupts:

https://stackoverflow.com/a/664779
https://lwn.net/Articles/106177/

A note that some system calls use a technique called vDSOs instead of jumping into kernel

space. I didn’t have time to talk about this, but it’s quite interesting and I recommend reading

into it.

And �nally, addressing the Unix allegations: I do feel bad that a lot of the execution-speci�c

stuff is very Unix-speci�c. If you’re a macOS or Linux user this is �ne, but it won’t bring you too

much closer to how Windows executes programs or handles system calls, although the CPU

architecture stuff is all the same. In the future I would love to write an article that covers the

Windows world.

Acknowledgements

I talked to GPT-3.5 and GPT-4 a decent amount while writing this article. While they lied to me

a lot and most of the information was useless, they were sometimes very helpful for working

through problems. LLM assistance can be net positive if you’re aware of their limitations and

are extremely skeptical of everything they say. That said, they’re terrible at writing. Don’t let

them write for you.

https://en.wikipedia.org/wiki/VDSO
https://man7.org/linux/man-pages/man7/vdso.7.html
https://0xax.gitbooks.io/linux-insides/content/SysCall/linux-syscall-3.html

More importantly, thank you to all the humans who proofread me, encouraged me, and helped

me brainstorm — especially Ani, B, Ben, Caleb, Kara, polypixeldev, Pradyun, Spencer, Nicky

(who drew the wonderful elf in [chapter 4]), and my lovely parents.

If you are a teenager and you like computers and you are not already in the Hack Club Slack,

you should join right now. I would not have written this article if I didn’t have a community of

awesome people to share my thoughts and progress with. If you are not a teenager, you should

give us money so we can keep doing cool things.

All of the mediocre art in this article was drawn in Figma. I used Obsidian for editing, and

sometimes Vale for linting. The Markdown source for this article is available on GitHub and

open to future nitpicks, and all art is published on a Figma community page.

http://127.0.0.1:3000/becoming-an-elf-lord
https://hackclub.com/slack
https://hackclub.com/philanthropy/
https://figma.com/
https://obsidian.md/
https://vale.sh/
https://github.com/hackclub/putting-the-you-in-cpu/
https://www.figma.com/community/file/1260699047973407903

